پیش بینی خشکسالی با استفاده از روش های شبکه های عصبی مصنوعی و سیستم استنتاج فازی-عصبی تطبیقی در حوزه آبخیز مند استان فارس
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه زابل - دانشکده فیزیک
- author مهناز رستمی
- adviser علیرضا مقدم نیا احمد پهلوانروی فرزاد حسن پور
- publication year 1393
abstract
تقاضای چشمگیر فزاینده برای مصرف آب ناشی از رشد جمعیت از یک سو، و منابع آب محدود از سوی دیگر، کمبود آب را به مسئله¬ای حیاتی در کشورمان تبدیل می¬نماید. بنابراین پیش¬بینی خشکسالی برای مدیریت مصرف بهینه آب، سیستم¬های آبیاری و مدیریت بهره¬برداری از مخازن ضروری است. در سالهای اخیر، توجه زیادی به استفاده از روش¬های هوش مصنوعی جهت مدلسازی فرآیند¬های هیدرولوژیکی دارای پیچیدگی و عدم قطعیت بالا معطوف شده است. در این پژوهش کارایی شبکه¬های عصبی مصنوعی(ann) وسیستم استنتاج عصبی- فازی تطبیقی (anfis) برای پش¬بینی خشکسالی حوزه مند براساس داده¬های ماهانه برای یک دوره آماری 33 ساله شامل بارندگی، دما و شاخص¬های خشکسالی spi و pn بطور مقایسه¬ای مورد ارزیابی قرار گرفته است. همچنین 70 درصد داده جهت آموزش و 30 درصد داده جهت آزمون مدل تعیین شد. برای ارزیابی کارایی مدل¬های ann و anfis از معیارهای آماری ضریب ناش(e)، ضریب همبستگی(r) و ریشه دوم میانگین مربعات خطا (rmse) استفاده گردید. نتایج حاصله نشان دهنده دقت بالاتر مدل ann نسبت به مدل anfis به منظور پیش¬بینی خشکسالی حوزه مند می¬باشد.
similar resources
پیشبینی خشکسالی با بکارگیری از مدلهای شبکه عصبی مصنوعی و سیستم استنتاج عصبی- فازی تطبیقی در حوزة مُند استان فارس
امروزه خشکسالی یک معضل جدّی و گریبانگیر دربسیاری از کشورهای جهان است؛بنابراین پیشبینیِ آن از اهمیت بهسزایی برخوردار میباشد. در این تحقیق، کارایی شبکة عصبی مصنوعی و سیستم استنتاج عصبی- فازیتطبیقی به عنوان روشهایی مؤثر برای پیشبینی شدت خشکسالی حوزة "مُند" استان فارس مورد بررسی قرار گرفت. برای این منظور از دادههای بارندگی ماهانة ایستگاه بارانسنجی تنگاب استان فارس با دورة آماری 32 ساله اس...
full textپیش بینی بلند مدت رواناب با استفاده از شبکه های عصبی مصنوعی و سیستم استنتاج فازی
مدلهای مفهومی بر مبنای هوش مصنوعی، اغلب برای پیش بینیهای کوتاه مدت و میان مدت هیدورلوژیکی به کار رفته اند. در این مقاله با استفاده از مفهوم تولید مجموعه ای از پیش بینی ها1 (esp) و تفکیک مدلسازی برای متغیرهای اقلیمی و هیدرولوژیکی، از مدلهای مفهومی برای پیش بینی بلندمدت حجم جریان رودخانه زاینده رود در محل ورودی به سد زاینده رود استفاده می شود. سیستم استنتاج فازی برای پیش بینی بارش فصلی به صور...
full textپیشبینی بلند مدت رواناب با استفاده از شبکه های عصبی مصنوعی و سیستم استنتاج فازی
مدلهای مفهومی بر مبنای هوش مصنوعی، اغلب برای پیشبینیهای کوتاه مدت و میان مدت هیدورلوژیکی به کار رفته اند. در این مقاله با استفاده از مفهوم تولید مجموعه ای از پیشبینیها1 (ESP) و تفکیک مدلسازی برای متغیرهای اقلیمیو هیدرولوژیکی، از مدلهای مفهومی برای پیشبینی بلندمدت حجم جریان رودخانه زاینده رود در محل ورودی به سد زاینده رود استفاده میشود. سیستم استنتاج فازی برای پیشبینی بار...
full textمدلسازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی و شبکه فازی- عصبی تطبیقی در حوزه آبخیز کسیلیان
Rainfall runoff modeling and prediction of river discharge is one of the important practices in flood control and management, hydraulic structure design and drought management. The present article aims to simulate daily streamflow in Kasilian watershed using an artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS). The intelligent methods have the high potential for dete...
full textپیشبینی جریان روزانه رودخانه اهرچای با استفاده از روش های شبکه های عصبی مصنوعی (ANN) و مقایسه آن با سیستم استنتاج فازی- عصبی تطبیقی (ANFIS)
در طی سالهای اخیر پیشبینی فرآیندهای هیدرولوژیکی به منظور بهرهبرداری پایدار از منابع آب با استفاده از روشهای هوشمند مورد توجه دست اندرکاران بخش آب قرار گرفته است. در این تحقیق با بهرهگیری از شبکههای عصبی مصنوعی (ANN) و سیستم استنتاج فازی- عصبی تطبیقی (ANFIS) اقدام به پیشبینی دبی جریان روزانه رودخانه اهر چای واقع در استان آذربایجان شرقی در ایستگاه های اورنگ، برمیس و تازه کند گردید. بر...
full textپیش بینی جریان روزانه رودخانه اهرچای با استفاده از روش های شبکه های عصبی مصنوعی (ann) و مقایسه آن با سیستم استنتاج فازی- عصبی تطبیقی (anfis)
در طی سال های اخیر پیش بینی فرآیندهای هیدرولوژیکی به منظور بهره برداری پایدار از منابع آب با استفاده از روش های هوشمند مورد توجه دست اندرکاران بخش آب قرار گرفته است. در این تحقیق با بهره گیری از شبکه های عصبی مصنوعی (ann) و سیستم استنتاج فازی- عصبی تطبیقی (anfis) اقدام به پیش بینی دبی جریان روزانه رودخانه اهر چای واقع در استان آذربایجان شرقی در ایستگاه های اورنگ، برمیس و تازه کند گردید. برای مد...
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه زابل - دانشکده فیزیک
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023